
KE Series Encased Amplifiers

Features

- Wide bandwidth, fast settling, high slew rate
- Low distortion and overshoot
- Linear phase
- Easy to use encased form
- Direct replacement for E103, E104, E200, E220, and E231

Applications

- For use on the bench or in a test station as a video amp, pulse amp, line driver, etc.
- "drop in" units for radar and communication systems

General Description

The KE Series amplifiers are designed to take full advantage of Fairchild's high-performance DC-coupled operational amplifiers in an easy-to-use, encased form. This format makes the KE Series amplifiers an excellent choice for use on the bench, in a test station, or in other environments needing both high performance and ease of use.

The op amp-based KE Series amplifiers provide a wide selection of features as well as the ability to customize parameters such as voltage gain and output impedance to the application.

KE231 designed for low-gain applications $(A_v = \pm 1 \text{ to } \pm 5)$

KE220 high bandwidth (-3dB BW of 190MHz), lower output current (50mA)

KE200 general purpose (-3dB BW of 95MHz)

KE103 high output current (200mA)

The KE104 is an encased version of the KH104AI, a DC to 1.1GHz linear amplifier with a fixed gain of 14dB and 50Ω input and output impedances. These features, coupled with excellent distortion and VSWR characteristics, make the KE104 ideal for applications in wideband analog and high-speed digital communications, radar, and fiber optics transmitters and receivers.

KE104 DC to 1.1GHz, fixed 14dB gain, low distortion.

Ordering Information KE104

Since gain and input and output impedances are fixed on the KE104, simply designate the connector type required by: KE104-BNC or KE104-SMA.

KE103, KE200, KE220, and KE231

Due to the flexibility possible with these amplifiers, the user must specify several parameters when ordering:

The full part number is KEnnn-p-con-Z_i-Z_o-A_v,

nnn: specify 103, 200, 220, or 231

p: specify N (non-inverting) or I (inverting)

con: specify BNC or SMA connectors or NDC for no case

Z_i: specify input impedance in ohmsZ_o: specify output impedance in ohms

 A_{v} : specify voltage gain with output unterminated

(ie: $Z_{load} = \infty$) (see example)

Select Z_i , Z_o , and A_v within the following constraints:

Parameter	KE103	KE200	KE220	KE231
A _v	$\pm 1/\pm 40$	±1/±50	±1/±50	±1/±5
max Z _{in} inverting	1500 A _v	2000 A _v	1500 A _v	250 A _v
non-invertin	ıg 10k	10k	10k	10k
min Z _{out}	0	0	0	0

Example:

KE200-N-BNC-75-50-20 means a KE200 with a non-inverting gain, BNC connectors, 75W input impedance, 50W output impedance, and a voltage gain of 20V/V (unterminated output). (When driving a realistic load, the actual gain is reduced by the factor $Z_{load}/(Z_{load}+Z_{o})$ due to the resistive divider action of the output impedance, Z_{o} , and the load connected to the amplifier, Z_{load} . The unterminated voltage gain, A_{v} , should be selected with this in mind.)

Typical Specifications (Note1)

Absolute Maximum Ratings

Model	-3dB BW (MHz)	Settling Time (ns, %)	Slew Rate (V/μs)	V _{out} , I _{out} (V, mA) (Note 2)	V _{cc} (V)	Power Dissipation (W @ 25°C)	Derate Above 25°C mW/°C	Output Current (mA)	Input Voltage (V)	T _o (°C)	T _s (°C)
General Purp KE200	oose 95	18, 0.1	4000	±12, ±100	5-17	1.8	10	100	Note 3	-25 to +85	-65 to +150
Wide bandwi KE220	i dth 190	8, 0.1	7000	±12, ±50	5-17	1.5	5	50	Note 3	-25 to +85	-65 to +150
High Output KE103	Current 150	10, 0.4	6000	±11, ±200	9-17	2.0	10	200	Note 3/4	-25 to +85	-65 to +150
Low Gain KE231	165	12, 0.1	3000	±11, ±100	5-17	1.8	10	100	Note 3	-25 to +85	-65 to +150
Ultra-wide Ba KE104	andwidth 1100	1.2, 0.8	4500	±1.6, ±40	9-17	1.8	N/A	40	±0.5	-25 to +85	-65 to +150

Notes

1. Nominal configuration

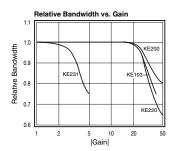
 V_{cc} : ±15V KE103, KE104, KE200, KE220, KE231 Load: 100Ω KE103, KE231 A_{v} : +20 KE103, KE200, KE220 200Ω KE200, KE220 +2 KE231 50Ω KE104

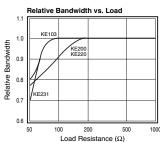
- When the amplifier is configured with an output impedance (Z_{out} > 0, the maximum output voltage swing (at the load) is reduced by the factor Z_{load}/(Z_{load} + Z_{out}). See the example on page 1.
- 3. These amplifiers must be kept out of saturation; in other words, the output voltage $\left(|V_{in}| < \frac{|V_{cc}| 2.5}{|A_v|} \right)$ must be kept away from the supply voltage.
- 4. In the non-inverting configuration, the input voltage to the KE103 must not exceed ±5V.

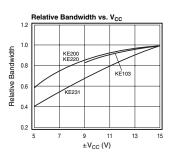
Discussion

The performance specified above is that typically seen for a nominally-configured KE Series amplifier; performance for different configurations can be determined using the graphs. Other parameters not shown can be approximated by referring to the individual hybrid data sheets.

Relative Bandwidth vs. Gain


At the nominal gain setting of +20 (+2 for the KE231),the amplifiers will typically provide 100% of the specified bandwidth; higher gains will reduce the bandwidth somewhat as shown in the graph.


Relative Bandwidth vs. Load


Listed under the typical specifications table are the nominal loads at which the amplifiers will typically provide 100% of the specified bandwidth. Heavier loads decrease the bandwidth as the plot indicates. (The total load on the amplifier is the sum of the output impedance, Z_0 , and the load connected external to the amplifier, Z_{load}).

Relative Bandwidth vs. V_{CC}

All of the KE Series amplifiers are designed to operate on ±15V supplies. The user may elect, however, to use lower supplies but at some sacrifice in performance as shown in the plot.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICES TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.